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Ah&act-The interaction of radiation with convection in an absorbing and emitting boundary layer 
is investigated by means of the integral method. Laminar flow of a nongray constant fluid over a gray, 
diffuse, isothermal flat plate is considered for small temperature differences. Second order analyses 
including the explicit effect of radiation on temperature profiles are carried out for optically thin and 
optically thick boundary layers. Closed form solutions are obtained for the Nusselt number, and plots are 
presented to illustrate the effect of optical thickness on temperature profiles and the Nusselt number. 
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NOMENCLATURE 

Boltzmann number, 

P&&/(4 + m) oT;t; 
Planck function ; 
specific heat; 
integration constants ; 
integro-exponential function of 
order n, 

E,(t) = 5 pne2 e--““dp; 
0 

heat-transfer coefficient ; 
thermal conductivity ; 
effective thermal conductivity, 

(1 + %,Jk; 
exponent in temperature depend- 
ence of Planck mean absorption 
coefficient, equation (12) ; 
exponent in temperature dependence 
of Rosseland mean absorption co- 
efficient, equation (53) ; 
local Nusselt number, hx/k ; 
Prandtl number, pC,/k; 
effective Prandtl number, pC,/k,; 
Planck number, 
a;k/(4 + m) clp( T,) oT;1; 

heat flux ; 
radiant and conductive heat fluxes, 
respectively ; 
local Reynolds number, p U ,x/p ; 
temperature ; 
temperatures in regions 1 and 2, 
respectively ; 
longitudinal velocity ; 
free stream velocity ; 
transverse velocity component ; 
distance along plate from leading 
edge ; 
transversal distance from plate ; 
monochromatic volumetric absorp- 
tion coefficient ; 
Planck mean absorption coefficient ; 
modified Planck mean absorption 
coefficient ; 
Rosseland mean absorption coeffi- 
cient ; 
mean absorption coefficient of ab- 
sorbing bands, 
temperature jump parameter, 
(WO) ln [(39, + 4)/(39, + 2~)] ; 
hydrodynamic boundary-layer thick- 
ness ; 
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conduction boundary-layer thick- 
ness ; 
wall emissivity; 
dimensionless temperature, T/T,,, ; 
gas viscosity ; 
frequency ; 
ratio of boundary layer thicknesses, 

WA ; 
gas density ; 
Stefan-Boltzmann constant ; 

optical thickness of conduction 
boundary layer, a,A. 

1. INTRODUCTION 

RECENT advances in heat transfer research now 
provide the boundary layer studies including 
radiation effects demanded by the increased 
importance of space technology. Among many 
problems, heat transfer to an absorbing medium 
in a laminar boundary layer over an isothermal 
black plate has been investigated by a number of 
authors. Cess [l] studied the optically thin 
boundary layer in a constant property gray and 
simplified non-gray gas; a solution valid outside 
the conduction boundary layer was obtained in 
terms of a much thicker radiation boundary 
layer, and another solution was found inside the 
conduction layer ; numerical methods were used. 
Oliver and McFadden [2] investigated a gray 
perfect gas having temperature dependent vis- 
cosity and thermal conductivity flowing over a 
black surface ; the solution procedure was 
numerical and iterative, and was restricted to 
fairly small optical thicknesses. 

Zamuraev [3] studied thin and intermediate 
boundary layers over a black plate, accounting 
for radiant flux at the outer edge of the conduc- 
tion boundary layer; a numerical solution was 
obtained by the finite difference method. 
Viskanta and Grosh [4] investigated an optically 
thick gray gas flowing over a black wedge ; an 
effective thermal conductivity was defined to 
include both conduction and radiation, and the 
wall effect was accounted for by assuming a 
step change in effective conductivity near the 

wall: the solution was obtained by numerical 
integration. 

Novotny and Yang [5] considered a gray, 
constant property thick gas using the method of 
matched asymptotic expansions; it was con- 
cluded that the use of the thick gas approxima- 
tion throughout the entire flow field gives the 
correct result for the total heat flux but an 
incorrect value for the temperature gradient at 
the wall, and consequently for the individual 
conductive and radiant fluxes. 

Taitel and Hartnett [6] studied the case of 
specified heat flux, obtaining an approximate 
solution for the optically thin boundary layer, 
a similarity solution for the optically thick 
limit, and a finite difference solution for inter- 
mediate thicknesses ; the finite difference solu- 
tion, however, could not be made to approach 
the thick gas solution for large optical thick- 
nesses, as the system of equations became 
unstable. Arpaci [7] applied the integral method 
to natural convection from a heated vertical 
plate, and in the same work developed a thick 
gas model including the wall effect ; the tempera- 
ture profiles employed were those proposed by 
Squire for the same problem in the absence 
of radiation (see e.g. Howarth [8]), and thus 
the effect of radiation was confined to the 
modification of the boundary layer thickness. 

In this paper the integral method is applied 
to laminar forced boundary layer flow of a non- 
gray, constant property gas over a gray, diffuse, 
isothermal flat plate. Recalling that first order 
profiles give unsatisfactory quantitative results 
for forced convective boundary layers, second 
order profiles are considered. Radiation explicitly 
affects the shape of the temperature profiles 
selected as well as the boundary-layer thickness. 
The present study offers two major advantages 
over those used previously for forced convection. 
First, closed form solutions are obtained for 
both thin and thick boundary layers, and second, 
a first order departure from the limiting thick 
gas solution is considered, including the effect 
of gray walls. Therefore it becomes possible, by 
the use of the thin and modified thick gas 
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approximations, to interpret the gas domains 
from transport to opaque and from cold to hot. 

2. FORMULATION 

Consider a constant property fluid flowing 
over an infinite flat plate. The flow is laminar, 
the wall temperature T, is maintained constant, 
and at points far from the plate the fluid velocity 
and temperature have the uniform values U, 
and T,, respectively. Assuming that radiation 
and conduction in the x (longitudinal) direction 
are negligible compared to convection, the 
integral formulation of the problem is given by 

(U,-u)udy=p (1) 
0 

m 

PC,; V - Tm)udy = c&v 

s 

(2) 

0 

Neglecting the small contributions of radiation 
to pressure and internal energy, its effect is 
taken into account in the heat flux expression, 

where 

q = qc ‘t qR, (3) 

qc= -#l$z 
ay ’ 

and for a semi-infinite expanse of a non- 
scattering gas having a temperature independent 
monochromatic absorption coefficient c(, 
bounded by a gray diffuse wall with emissivity t; 
and reflectivity pW = 1 - c, 

qR(Y) = 2 1 {~B,,,&(~~Y) 

+ ~IG%@,Y) K 1 B,(Y’) &(a,~‘) dy’ 

+ a, i WY’) J%C~Y - Y’>I dy’ 

- a, p B,(y’) E,[~,(Y' - Y)] dy’) dv, (5) 
I’ 

aqR 

ay 

- a,. B,(Y’) J%lk(y - Y’U dy’ 

CD 

- a, B,(Y’) El[av(y’ - Y>I dy’ 
s 11 dv, (6) I 

where B, denotes the Planck function, 

[ B,dv = oT4, and E,(t) the integro-exponential 

function of order n, defined as j CL”-’ e-‘lr dp. 

Clearly, the foregoing eqeations for the 
radiant heat flux are difficult to use because of 
the complicated nature of a,,(v) for real gases. 
For this reason, and also to obtain results of a 
general nature rather than those restricted to a 
single gas, the gray gas approximation (a,, = 
constant) has been applied in the past to 
problems involving gaseous radiation. However, 
only in the two limiting cases a,L + 0 (thin gas) 
and a,L + m (thick gas) for all v, where L 
denotes a characteristic length, can overall 
mean absorption coefficients (Planck and Rosse- 
land means, respectively) be defined to correctly 
account for radiation, and these may differ by 
orders of magnitude. Yet it is well known from 
the data available on gases with significant 
radiation properties (such as carbon dioxide, 
water vapor and many others) that the optical 
thickness of the absorbing bands may range 
from thin to thick, and often assumes inter- 
mediate values for which these approximations 
are not valid. The present work is aimed at 
improving understanding of this important 
intermediate optical thickness range by inter- 
polating between thin gas and improved thick 
gas solutions. 
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In order to have a simple approach of general 
significance and yet to represent the absorption 
spectrum better than the gray gas approxima- 
tion, the spectrum is assumed equivalent to a 
number of bands of arbitrary width and spacing 
but all of the same height c(@ The model thus 
accounts for the windows in the absorption 
spectra of real gases, and the averaged height 
c(,, need account only for strongly absorbing 
bands. Using this approximation to remove the 
integro-exponential function from the integra- 
tion over v, and recognizing that by the definition 
of the Planck mean, ap, and modified Planck 
mean, aM, coefficients 

[ dU4 dv = ap(T) aT4(y’), 

i aA,, dv = a,&T, T,,,) aT$, 

(7) 

(8) 

the integration of equations (5) and (6) over 
frequency gives 

qR(y) = ECJT~ 1 + a’:; Tw) [2E,(a,y) - 111 
i 

+ 4m&(aoy) a,(T) T4(y') W,y’) dy’ 
0 

1 

+ 2a s a,(T) T4(y') E,[a,(y - Y')] dy’ 

cc 

- 20 a,(T) T4(y’) &[ao(y’ - ~11 dy’, (9 

w __ = 20 2a,(T) T4(y) - cadT, T,) T:E,(a,y) 
ay i 

m 

- 2pwEz(aoy) s 
a,(T) T4(y’) &(aoy’) a0 dy’ 

0 

J 

- ap(T) T4(y') El[aob - ~91 a0 dy’ 

m 

- s a,(T) T4(y') El [ao(y’ - Y)] a0 dy’ . (10) I 
1 

Assuming a, to be independent of tempera- 
ture, it follows from equations (7) and (8) that 

a&T, TJ = a&T,), (11) 

and for a real gas in a limited temperature 
region the Planck mean coefficient can often be 
approximated as 

a,(T) = (T/T,)” a,(T,), (12) 

where m depends on the gas and temperature 
range. For example, for water vapor between 
between about 1OOO”R and 25OO”R, m = -2 
(see [9]). Equations (9) and (10) thus become 

qR(y) = apKw) oT: & + d [2E3(aoy) - l] 
P w 

00 

+ ~L@,(~oY) 
s 

e4 + “(~‘1 &boy’) dy’ 
0 

)‘ 

+ 2 

s 

~4+m(~‘)E2[ao(y - Y’)] dy’ 
0 

-_ 

-2 04+m(y’) E,[a,(y’ - y)] dy’ 
s 

, (13) 

1 

a4R 
~ = 2a,(T,) aT: 
ay i 

204+“(y) - cE,(a,y) 

m 

- 2pwE,(aoy) 
s 

e4’“(y’) EAaoy’) a0 dy’ 

0 

Y 

- 

s 
~4+m(~‘) E,[ao(y - ~71 a0 dy’ 

0 

CL 

- 

s 
04+m(y’) El[ao(y’ - Y)] a0 dy’ , (14) 

1 

where 0 = TIT,. 

The term ~oT$[l - ap(Tw)/ao] in equation 
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(13) represents energy emitted by the wall in 
bands in which the gas is transparent, and 
consequently this energy simply passes through 
the gas until it strikes a bounding surface. In 
turn, this bounding surface emits and reflects 
energy back to the wall. However, for the 
problem being considered here this wall to wall 
radiant transfer is completely independent of 
the wall to gas heat transfer, and may conse- 
quently be neglected in the following. 

It is interesting to note that although the 
study by Gilles et al. [lo] differs considerably 
from the present one, essentially the same result 
is obtained for the radiant heat flux. 

3. SELECTION OF TEMPERATURE PROFILES 

Because of the fundamental difference between 
radiation and conduction, a temperature profile 
that gives a reasonably accurate result for a 
transparent gas may not be suitable to an 
absorbing gas. Consequently careful attention 
must be paid to profile selection. Clearly, 
absorption of the major portion of radiation 
emitted and reflected from the wall in the 
absorbing bands of the gas occurs in a layer of 
(transversal) thickness y such that cry w 1, 
so there is always a layer of at least this thickness 
in which radiant transfer is important. However, 
since radiant heat transfer cannot force the gas 
temperature at the wall to equal the wall 
temperature, a conduction boundary layer also 
exists. The thickness and temperature of this 
layer are, of course, affected by radiation, but 
conduction plays the major role. 

Depending upon the size of the governing 
parameters, the optical thickness, r0 E a,d, 

of the conduction boundary layer (of thickness 
d) varies as 0 < r0 < co. When z0 e 1 the 
temperature outside the conduction layer may 
be determined by solving the governing differ- 
ential equation ignoring conduction, while the 
temperature inside the conduction layer is 
affected by both radiation and conduction. 
When r. % 1, the radiation wall effect is con- 
fined to a small fraction of the conduction layer. 
Away from the wall the rapid decay of .the 

G 

integroexponential functions makes the radiant 
transfer essentially dependent on local condi- 
tions alone, and thus similar to a diffusion 
process (Rosseland gas). When r. = o(l), both 
radiation and conduction affect about the same 
region, so the foregoing simplifications are no 
longer valid. 

The simplest temperature profile that rep- 
resents the physics, often referred to as the first- 
order profile, satisfies the following three 
conditions : 

T(O) = T,, T(A) = Tm, g(A)4 
It is well known, however, that for forced 
convection problems excluding radiation a 
parabolic profile based on these three conditions, 
although qualitatively valid, is quantitatively 
inadequate. At least two methods of improving 
this profile are commonly employed. One is 
based on satisfying the differential form of the 
energy equation and/or its derivatives at one 
or the other boundary. The second is to satisfy 
moments of this equation. Since it is not only 
known to provide a sufficiently accurate answer 
in the non-radiating case but is also algebraic- 
ally simpler, the former method is applied here. 
Specifically, since two of the above conditions 
apply at y = A, the additional condition is 
obtained by satisfying the differential form of 
the energy equation at the wall. This gives 

g!? =dqR. I I a3 w ay w 

(15) 

Inserting equation (14) equation (15) may be 
rearranged to give 

e4fm(~‘) E2(aoy’) a0 dy’ 

cc 

- s 04'"(y') E,(a,y') a0 dy’ 1 (16) 
0 
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For the transparent gas, (a2T/8y2) I,+ is zero. 
As the absorption becomes noticeable, 
(8’ Tiay2) I,,, increases correspondingly, bringing 
in the first order effect of radiation on the 
temperature distribution. This effect is adequate- 
ly described by the cubic profile. As absorption 
continues to increase, the wall effect forces the 
temperature to take on a rapid change in slope 
very near the wall, a change the cubic profile is 
unable to produce. In this case equation (15) 
may be assumed to hold not only at the wall, but 
in the neighborhood of the wall, provided 
y/A 4 1. Outside of this region the cubic 
profile is still adequate. 

4. THIN GAS ANALYSIS 

Approximation of the radiant heat flux 
The problem may be made mathematically 

tractable by approximating the radiant heat 
flux. First, the radiant flux to the boundary 
layer obtained from equation (13) 

qR I$ = 2aa,(T,) T$ [E,(a,,A) - iI 

02 

X 04+%‘) E,(x,y’) dy’ 1 
0 

A 

+ 

s 
04+“‘(y’) E,[a,(A - Y’)] dy’ 

0 

Jc 

- c 04+"'(y') E,[a,(y’ - A)] dy’ 

cc 

+ s 04+'Yy') E,(a,y’) dy’ , (17) 

0 

may be simplified for small values of r0 in the 
usual manner by noting that 

E,(T,) = 3 - to + o(T;), E,(Q) = 1 + CC,,), 

[%,)dt = O(6), and assuming that 

re4+“‘(y’) E,(a,y’) dy’ = 0~“‘~E2(aoyI) dy’. (18) 
A 

The result is 

qR 1: = 2a,(T,) aT: j2 i t14+Yy’) dy’ 

-A[t +;I + ~,,84,+“‘]}. (19) 

Furthermore, assuming that 

~Q4+“Yyf)E2(aoy’)aOdyi= f3~“‘~E2(aoy’~aody’, 
0 

~84tm(y’)El/ao(y’- y)IaOdy’ 
0 

= @?’ [El lao(y’ - y)Ia,dy’, (20) 

equation (14) becomes 

i$ = 2oa,(T,)T: {2[e4+m(y) - ezm] 

- t[l - Ovm] E,(a,y)). (21) 

Within the boundary layer E,(a,y) “N 1, and the 
expression developed by Cess [l] for this region 
is a special case of equation (21) for m = 0. 

A two-region study seems convenient for the 
thin gas analysis. 

Region 1. (y > A). In this region conduction is 
neglected. When P < 1, which is usually true for 
gases and is assumed to be the case here, the 
thermal boundary layer A is thicker than the 
hydrodynamic boundary layer 6. Therefore, 
u = u,, v = 0, and the differential formulation 
of the problem becomes 

- ~(1 - e4,‘V2(aoy)]. 

e4+m 
cc ) 

cm 
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Introducing 

V’“(y) G ;EZ(UOy)[l - 64,+“] + e4,+m, 

B, = pU,C,T,,/(4 + m) aT$ (23) 

1. E (T,,, - T,)/T,, 

and using for small 1 the first two terms of the 
Taylor series expansion of f?4+m about 19 = 1, 

04+m 
= 1 + (4 + WI) 8, 

equation (22) may be rearranged to give 

ah -= !!!!/!2(B _ e,), 

ax m 

subject to the boundary condition 

lim 8, = 8, = f3,(0, y). 
)‘-+m 

This readily yields 

8, - 0 
~ = exp 

[ 1 

7J 4Q 

8,- 8 Bm 

Noting that 

4a,(T,) 

B, 

cc;k 

pw = (4 + m)a,(T,)aT;t 

where, from the solution to equation (1) 

(24) = 2ac@k)T:(1 + P,) (4 + m) (1 - e,), 

e,(d) = e&d) = eA, 

(25) 
where 

13E (I - e,) 
2(A)= -- 

14OP A 

(26) 

(27) 

For small values of z,, the product z,E,(z,) 
approaches zero, so ae,(A)/ay 4 ~$9~ and is 
therefore neglected. After solving for the con- 
stants, the temperature profile becomes 

(28) 

z = ; 3 + (1 + P,)~ 
[ 

6 Y 

A I( 1 w x 6 Y 
2 

- (1 + P+- -j 

w 0 

[ 

r; Y 
-; 1 -(l +p,)F I( > 

3 

w 7 
(33) 

Region 2. (y c A). Since (aqR/ay)J, is small, 
the usual cubic profile 

~=ii,ta,(l’/~l+a,(y_d)‘+a,(l;ld)3 (30) 
A 

is adequate in this region. Here tIA E B,(A) is 
obtained from the solution in region 1. Now the 
boundary conditions to be satisfied are 

z2r I 

e,(O) = 1, k$ 
w 

(31) 

(32) 

or, expressed in terms of 8,, 

and restricting the solution to the case where 
r@‘, < 1, an alternate form of equation (27) 
may be obtained : 

0, - 0, 136 
p= - i E,(~,Y). (29) (34) - 8, 140p 

0 CVz; 
d 8, 
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Since the solution obtained in region 1 is a 
solution to the differential energy equation, it 
readily follows that 

PC,-& (T- T,) U, dy = 8j/,. 
s 

(35) 

A 

Subtracting equation (35) from equation (2), the 
integral formulation can alternatively be ex- 
pressed as 

A 

PC& (T-T&dY=&-ql,= -41:. (36) 
s 
0 

Defining 5 E 6/A and. noting that 

[(T - TJudy = a(T - T,)udy 

+ U,ds(T - L)dy, (37) 
d 

the integrals can be evaluated and expressed in 
terms of t(x). The result is 

A s (T-T,)udy=AU,(T,-T,) 5 

0 

Inserting the conductive heat flux, 

- 4’ 

(39) 

and the radiative flux from equation (19) 

A 

- CrR = 2(4 + m)ax,(T,)T$(l - 0,) 
w 

A ,,k(Tw; T=) (+& (40) 
W 

into equation (36) results in 

k 

= 2PU& 

k 

X (41) 

For a non-absorbing gas the solution to 
equation (41) exists in the literature (see e.g. 
Eckert and Drake [ 111). The result is 

1/5(x) = l/50 = l/2 

+ J(13/35P - 3/20) = const. (42) 

For small values of zi/B,,,, assume that r(x) can 
be expanded as 

C(x) = 50 + (r@$J (1 + (43) 

and assume that t1 is constant as well as to. 
Carrying out the differentiation, neglecting 

terms of higher order than @,,,, and noting that 

a2(djdx) (z;/.Y,,,) = (z;/&) (dd2/dx) 

yields 
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Equating the coefficients of r$g, and solving 
for <I gives 

(1 + ~,)(I/16 - 35;/40 + <i/16) 

+ (13<;/28OP)[3~(7/8 - 3&/8 

51 = _ + 35;/20 - 13r;/28OP) - l/2] 

3/45, - 3/16 - 3&,/20 (45) 

which demonstrates the validity of the assump- 
tion of a constant t1 in equation (43). 

Finally, the effect of radiation on heat transfer 
is considered in terms of the Nusselt number. 
From the definition of the Nusselt number, 

N, = hxlk = (4”lw + qRI,)xlk(T, - T,), (46) 

where q’(,,, is given by equation (39) and 

(47) 

(48) 

The results are plotted and discussed in section 
VI. 

5. THICK GAS ANALYSIS 

Approximation of the radiant heat flux 
The diffusion or Rosseland approximation 

to the radiant heat flux, obtained by expanding 
the emissive power in a Taylor series about a 
point and neglecting higher order terms, has 
long been recognized to be a valid approxima- 
tion in an optically thick medium far from 
boundaries. The result for the radiant heat flux is 

qR(Y) = _ $?&!$ = _ %$!$ (49) 
R 

where @R denotes the Rosseland mean absorp- 
tion coefficient, defined as 

1 -- 
aR 

(50) 
0 

Applying the same procedure to the absorption 
spectrum used here, the radiant heat flux far 
from boundaries is found to be 

qR(Y) = - tf $ $ [a,(T) T41 

= 
40 a,(T’)T:‘, d64+m -- 
3 a; dy ’ 

(51) 

It follows from (49) and (51) that a0 can be evalu- 
ated from the Planck and Rosseland mean 
coefficients. The result is 

ai = aR(~ 4 ( > 
4 + m #gm+n 

, (52) 

where it has been assumed that the temperature 
dependence of aR can be apprOXiIIMkd as 

OIRtT) = (T/Tw)"aR(c). (53) 

It follows from (52) that a0 is constant only if 
m + n = 0. However, for 8 x 1, a0 is approxi- 
mately constant despite nonzero m + n (For 
8 = 1 and M = 0, equation (52) is identical to 
the results of [lo]). 

Arpaci and Larsen [12] recently extended the 
thick gas approximation to include the wall 
region. Applying their method to the present 
problem gives 

40 a,(T,) C 
qR(y) = - 5 a; 

x [1 - pw&taoy) - $E,(a,y)] F. (54) 

Approximating the integro-exponential func- 
tions by exponentials, 

Es(t) s (l/2) exp (- 3t/2), 

E4(t) E (l/3) exp (- 3t/2), 

the radiant heat flux becomes 

40 a,(G) T$ 
qR(y) = - 7 af [1-(l-S) 

(55) 
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A two-region study is also suitable to the 
thick gas analysis. 

Region 1. (y + A). Consider the differential 
form of the energy equation. If r0 is very large, 
the wall effect disappears within a small fraction 
of the boundary-layer thickness, and in this 
layer U, t’, and consequently the left hand side 
of the energy equation are near zero. It seems 
reasonable to assume that 

Region 2. (y < A). In view of the character 
of the above solution, and in particular equation 
(61), outside the region of wall influence the 
profile remains similar to that in a non-absorbing 
gas. That is, 

;I;,= 1 -;($)+;,(;>‘; (62) 

2 
1 O= k;yT &IR 

7-5 (56) 

subject to the boundary condition T,(O) = T, 
adequately describes this region. The remaining 
boundary condition is determined by equating 
the slope at the outer boundary with that in the 
adjacent region. Integrating equation (56) once 
to obtain 

where Tz is to be selected so that this profile, 
which is valid only beyond a certain distance 
from the wall, matches the solution of region 1 
at some value of y/A. 

The constants C, and Tz are determined by 
equating temperatures and slopes at a value ofy!A 
such that y/A 6 1 and exp [ -(3/2) zO(y/A)] 4 1. 
This gives 

c =_L(T,-Td Ts+c_T =T,-T, 
2 

70 (1 + /3) ’ w Ot 1+p ’ 

k% = qR + cl, (57) 

substituting qR from equation (55), linearizing 
the temperature difference, and rearranging, 
equation (57) becomes 

(63) 

{1+&J-(1-;) 
G C, --=_ 
ay k’ 

(58) 

Integration readily yields 

Tl - T, = C, 

39, + 4[ 1 - (1 - ln Q2) exp (- 3c(,y/2)] x 

(38, + 2~) exp (- 3cx,y/2) 

(59) 
where C, = 2S,C,/a,k(3B, + 4). It is clear 
from equation (58) that, for large a,y, 

?i?& + :,,,)= ;a&,. 
(60) 

Consequently, 

where /I E (l/to) In [(38, + 4)i(38, + 2t)]. 
Thus the profile selection is complete. 

Since for y > A it has been assumed that 
T, = T,, the integral formulation of the problem 
given by equation (2) can be rewritten as 

A 

PC,; CT - TJudy = qclw + qRl,,a, s (64) 
0 

q’l,,, = - k!$ 
w 

qR(,,, = - ;soT$$ 
w 

where 

(65) 

Since u -+ 0 as y --+ 0, it may be assumed that 

A 

s (T - T,) u dy r (T; - T,) 

0 

1 [I -;($+;($]udy, (66) 

n 
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which gives 

1 (T - T,) u dy = dU,(T, - T,) 

x (318 - 3</8 + 3<‘/20)/(1 + p). (67) 

Inserting equation (65) and (67) into (64) yields 

Defining an effective thermal conductivity, 
k, E k(1 + 4/39’,), to account for both radia- 
tion and conduction and an effective Prandtl 
number based on k,, P, E ,uC,/k,, and noting 
that equation (68) corresponds to the non- 
absorbing case except for the replacement of P 
by P,, the solution is seen to be independent of 
r0 and is given by 

l/l = l/2 + 4(13/35P, - 3/20). (69) 

The Nusselt number, however, depends on rO, 
and is given by 

N, = 

This yields, after dividing through by R$, 

+&_-iJl~ 

(70) 

(71) 

6. RESULTS AND DISCUSSION 

Due to the number of parameters involved, 
a complete parametric study of the problem 
would be rather space consuming For this 
reason a few representative values of E and 8, 
have been selected for one representative value 
of the Prandtl number, P = 0.74. Figures 1 and 2 

P=O 74 

(‘10 

- - Thck gas limit 

- -- - lnterpolatlcm 

I I I I I 
0 001 001 01 IO IO 100 

TO =a,A 

FIG. 1. 

__ 

P=O 74 

c=o I 

- - Thick gas llmlt 

---- Interpolation 

IO- 

O‘l- 

037 

1 1 I 1 
0001 001 01 10 10 100 

1-0 = a,A 

FIG. 2 

illustrate the effect of varying z. on N,.R$. 
Figures 3-5 illustrate the temperature profiles 
for the transparent, thin and thick gas cases. 

The Nusselt number results of Figs. 1 and 2 
are similar to those of [7], as might be expected. 
They are also qualitatively quite similar to the 
results of Viskanta [13] for flow in a parallel 
plate channel, which apply to all optical thick- 
nesses. An examination of Viskanta’s results 
tends to support the use of an interpolation 
between the thin and thick gas solutions as a 
reasonable method of estimating the heat 
transfer when no solution valid in the inter- 
mediate region of optical thicknesses is available. 
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08 
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04 

02 

<=I 0 

P=O74 

FIG. 3. 

FIG. 4 
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FIG. 5. 

In Fig. 6 the results of the present thin gas 
analysis, restricted here to the gray gas case, 
are compared with the gray gas results of Cess 
in [l]. The results of Cess are presented only 
for P = 1, while the assumption made in the 
integral analysis that A 2 6 is valid only for 

P < 13/14. This slight difference in Prandtl 
numbers results in a slight discrepancy between 
the non-radiating solutions, but the effect of 
absorption of radiation upon the two solutions 
appears to be very similar. 

The behavior of the thick gas solution as r. 
is decreased has not been considered in previous 
works except for [7] and [ 121. Present study 
predicts a change in slope in this region given by 

aTI LW,(O) 

I 

8, + 4/3 

ay ay - = 9, -I- 2~13 ’ (72) 

where TI and T, represent the temperatures in 
the inner and outer regions, respectively. 
Novotny and Yang [5] have already shown the 
special case of the same relation for E = 1 by 
the use of matched asymptotic expansions. 
Figure 3, for 6 = 1 illustrates the change in 
temperature profiles as a function of ~~~ Figure 
4, for 6 = 0.1, illustrates the severe change in the 
slope of the temperature profiles near the wall. 
Figure 5 shows the region close to the wall in 
detail. It should be noted, however, that the 
expression used for the radiant heat flux in the 
thick gas is based upon a truncated Taylor 
series expansion, and therefore excessive curva- 
ture in the temperature profile reduces the 

I.0 - *=I.0 

- - Cess, P=l,O 
OB- 

- Present, P = 13114 

0.6 - 

I I I 
0 0002 0 001 O-01 01 

FIG. 6. 
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accuracy of the approximation. The selection 6. 

of E = 0.1 is purposely made to dramatize the 
effect of reducing 6, and may possibly be too 
severe for accurate quantitative results. For 7. 
details the reader is referred to [12]. 

1. 

2. 

3. 

4. 

5. 

8. 
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EFFET D’UN RAYONNEMENT THERMIQUE NON GRIS SUR SUR UNE CONVECTION 
FORCBE LAMINAIRE POUR UNE PLAQUE HORIZONTALE CHAUFFl?E 

R6sumC--On a recherchk au moyen d’une mCthode intCgrale l’interaction du rayonnement et de la con- 
vection dans une couche limite absorbante et &m&rice. L’itcoulement laminairc d’un fluide g propri&t& 
constante et non gris sur une plaque plane isotherme, diffusante et grise est considtrk pour de petites 
diffkrences de temperature. Les analyses de second ordre renfermant I’influence explicit d’un rayonnement 
sur les protils de tempkrature sont faites pour des couches limites optiquement tines ou bpaisses. 

Des solutions sont obtenues en cc qui concerne le nombre de Nusselt et des courbes sont prisentCes 
pour illustrer I’effet de I’Cpaisseur optique sur les protils de temperature et sur le nombre de Nusselt. 

DER EINFLUSS VON NICHT-GRAUER, THERMISCHER STRAHLUNG AUF DIE 
LAMI~RE, ERZWUNGENE KONVEKTI~N UBER EINE GEHEIZTE HORIZONTALE 

PLATTE 
Zusammenfassung-Mittels der Integral-Methode wird die Wechsclwirkung zwischen Strahlung und 
Konvektion in einer absorbierenden und emittierenden Grenzschicht untersucht. Dabei wird die laminare 
Strijmung einer nichtgrauen Fliissigkeit konstanter Stoffwerte iiber eine graue isotherme, ebene Platte 
fiir kleine Temperaturdifferenzen betrachtet. Fiir optisch diinne und dicke Grenzschichten werdcn Analysen 
2. Ordnung ausgefiihrt, die den expliziten Effekt der Strahlung auf die Temperaturprofile einschliessen. 
Es ergeben sich Liisungen in geschlossener Form fiir die Nusseltzahl und Einfliisse der optischen Dicke 

auf die Temperaturprotile. Die Nusseltzahl wird durch Diagramme erlfiutert. 
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paccemalo~eii naOTepmqecKoi% IIJIaCTClHbI Ilpll He6O~bIlIIIX pa3IIOCTfIX TeM IIepaTyp. 

UpOBeAeH aHaJII43 B+$.IeKTOB BTOpOrO IlOpJI)JKa, B KOTOpOM B fI1HHOM BMfle yLITeHO BJIIlHIIIle 

H3nyqeHm Ha np0Qm1l TemepaTypbI gncr onTIl9ecm ~0H1f0r0 II onTInecKI1 ~0.11cT0r0 

IIOrpaHWIHbIX CJIOeB. R 3aMKHyTOM BclJJe JJJIH qllCJIa HycCenbTa IIOZIy’JeHbI ~eII,eHllH. 

npeRCTaBJIeHb1 rpa@HKEl AJIfI IlJIJlIOCTpa~IIll BJIlIRHLlfI OlITWIeCKOii TO;IIqIIHbI Ha TeMIlt’- 

paTypHbIe IIpO@fJlI4 II YIlC.?O HyCCeJlbTa. 


